42.6k views
5 votes
Find the mass of the lamina that occupies the region D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} with the density function ρ(x, y) = xye^(x+y)

User Decades
by
5.7k points

1 Answer

3 votes

Answer:

The mass of the lamina is 1

Explanation:

Let
\rho(x,y) be a continuous density function of a lamina in the plane region D,then the mass of the lamina is given by:


m=\int\limits \int\limits_D \rho(x,y) \, dA.

From the question, the given density function is
\rho (x,y)=xye^(x+y).

Again, the lamina occupies a rectangular region: D={(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

The mass of the lamina can be found by evaluating the double integral:


I=\int\limits^1_0\int\limits^1_0xye^(x+y)dydx.

Since D is a rectangular region, we can apply Fubini's Theorem to get:


I=\int\limits^1_0(\int\limits^1_0xye^(x+y)dy)dx.

Let the inner integral be:
I_0=\int\limits^1_0xye^(x+y)dy, then


I=\int\limits^1_0(I_0)dx.

The inner integral is evaluated using integration by parts.

Let
u=xy, the partial derivative of u wrt y is


\implies du=xdy

and


dv=\int\limits e^(x+y) dy, integrating wrt y, we obtain


v=\int\limits e^(x+y)

Recall the integration by parts formula:
\int\limits udv=uv- \int\limits vdu

This implies that:


\int\limits xye^(x+y)dy=xye^(x+y)-\int\limits e^(x+y)\cdot xdy


\int\limits xye^(x+y)dy=xye^(x+y)-xe^(x+y)


I_0=\int\limits^1_0 xye^(x+y)dy

We substitute the limits of integration and evaluate to get:


I_0=xe^x

This implies that:


I=\int\limits^1_0(xe^x)dx.

Or


I=\int\limits^1_0xe^xdx.

We again apply integration by parts formula to get:


\int\limits xe^xdx=e^x(x-1).


I=\int\limits^1_0xe^xdx=e^1(1-1)-e^0(0-1).


I=\int\limits^1_0xe^xdx=0-1(0-1).


I=\int\limits^1_0xe^xdx=0-1(-1)=1.

No unit is given, therefore the mass of the lamina is 1.

User Christian Brabandt
by
6.1k points