ANSWER
![(f + g)(x) = \frac{4{x}^(6) \: + {x}^(5) + 1 }{ {x}^(5) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7cco25gm8lltxra0n4x59ez5avmk94th6u.png)
EXPLANATION
The given functions are:
![f(x) = 4x + 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/rnxyn1vorz3bkq05x98a59w0iyibql3r.png)
and
![g(x) = {x}^( - 5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wf1fvn2rvnswpyluam77fo8j2i717u3xcu.png)
We now want to find
![(f + g)(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/28syrjvkqyoy7e5g8gfee1l08yg5cp7ifs.png)
We use this property of Algebraic functions.
![(f + g)(x) = f(x) + g(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2y1vg8nmvzm6m3mb4m6o4xy3wk6iruvilc.png)
We substitute the functions to get:
![(f + g)(x) = 4x + 1 + {x}^( - 5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xov6gipq1fmgh5t352ztvrqu4i4035i5oc.png)
Writing as a positive index, we get:
![(f + g)(x) = 4x + 1 + \frac{1}{ {x}^(5) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dafdhkhbr4ul15xhr1jp70cezf1soc5t7u.png)
The property we used to obtain the positive index is
![{a}^( - n) = \frac{1}{ {a}^(n)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/seelrlrallrzava03zbuhryh873ea13m9n.png)
We now collect LCD to get:
![(f + g)(x) = \frac{4x \cdot {x}^(5) \: + {x}^(5) + 1 }{ {x}^(5) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c15euo3p8al3y0cxf1wehozx4vf5hqebkx.png)
This simplifies to:
![(f + g)(x) = \frac{4{x}^(6) \: + {x}^(5) + 1 }{ {x}^(5) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7cco25gm8lltxra0n4x59ez5avmk94th6u.png)