Answer:
a. (x+5)(x-5)
b. 3(x+1)(x-5)
c. (x^2+3)(x+2)
Explanation:
a. x^2-25
The given expression can be factorized using the formula:

b. 3x^2-12x-15
We can see that 3 is common in all terms
=3(x^2-4x-5)
In order to make factors, the constant will be multiplied by the co-efficient of highest degree variable
So,
![3[x^(2) -4x-5]\\=3[x^(2)-5x+x-5]\\=3[x(x-5)+1(x-5)]\\=3(x+1)(x-5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nk8s6dl0enan14oag10mxbl9xk59fjl1je.png)
c. x^3+2x^2+3x+6
Combining the first and second pair of terms
![x^(3)+2x^(2)+3x+6 \\=[x^(3)+2x^(2)]+[3x+6]\\Taking\ x^(2)\ common\ from\ first\ two\ terms\\=x^(2) (x+2)+3(x+2)\\=(x^(2)+3)(x+2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g9jiwhi78lvte4hwt1i4mwtio6pk5d6qs9.png)