Answer:
a = 2, b = 6
Explanation:
To obtain g(f(x)) substitute x = f(x) into g(x), that is
g(x + 3) = a + b(x + 3)²
= a + b(x² + 6x + 9) = a + bx² + 6bx + 9b
For a + bx² + 6bx + 9b = 6x² + 36x + 56
Then coefficients of like terms must be equal
Comparing like terms
x² term ⇒ b = 6
constant term ⇒ a + 9b = 56 ⇒ a + 54 = 56 ⇒ a = 56 - 54 = 2