(a) 6.04 rev/s
The speed of the ball is given by:
![v=\omega r](https://img.qammunity.org/2020/formulas/physics/college/ou8imjjc31zpfbw3lqf0r5gowyk6f9vl25.png)
where
is the angular speed
r is the distance of the ball from the centre of the circle
In situation 1), we have
![\omega=8.13 rev/s \cdot 2\pi = 51.0 rad/s](https://img.qammunity.org/2020/formulas/physics/college/jg2h3sjb4c6bl4zygvq1zt4wue6swuu3e8.png)
r = 0.600 m
So the speed of the ball is
![v=(51.0 rad/s)(0.600 m)=30.6 m/s](https://img.qammunity.org/2020/formulas/physics/college/i8gx2eo23laemxi0s7n8ho7o7f2rgxspof.png)
In situation 2), we have
![\omega=6.04 rev/s \cdot 2\pi = 37.9 rad/s](https://img.qammunity.org/2020/formulas/physics/college/2au74dy0lqwjml3m033wyaa80h3amtwigv.png)
r = 0.900 m
So the speed of the ball is
![v=(37.9 rad/s)(0.900 m)=34.1 m/s](https://img.qammunity.org/2020/formulas/physics/college/rcv6pguyxo8hd201jh1jkag8d4dd23fayn.png)
So, the ball has greater speed when rotating at 6.04 rev/s.
(b)
![1561 m/s^2](https://img.qammunity.org/2020/formulas/physics/college/jk9z52isbe3ff9vh648og8ss61dx8tlus0.png)
The centripetal acceleration of the ball is given by
![a=(v^2)/(r)](https://img.qammunity.org/2020/formulas/physics/middle-school/i4cb2fhd7cprxg554mccgh9368fchjcnjl.png)
where
v is the speed
r is the distance of the ball from the centre of the trajectory
For situation 1),
v = 30.6 m/s
r = 0.600 m
So the centripetal acceleration is
![a=((30.6 m/s)^2)/(0.600 m)=1561 m/s^2](https://img.qammunity.org/2020/formulas/physics/college/gg784q6exkpojkp65254tv7bgki1vpplvg.png)
(c)
![1292 m/s^2](https://img.qammunity.org/2020/formulas/physics/college/cyolf9fa4yvql1h6d7qvhxzjckfmda5pej.png)
For situation 2 we have
v = 34.1 m/s
r = 0.900 m
So the centripetal acceleration is
![a=(v^2)/(r)=((34.1 m/s)^2)/(0.900 m)=1292 m/s^2](https://img.qammunity.org/2020/formulas/physics/college/ncxmgj1riptr38f2nnpy07s7w3j3gulyyx.png)