206k views
3 votes
What is the value of x if 9x^-1 - 2 = 25

2 Answers

4 votes

Answer:

C on edg

Explanation:

User Gdrt
by
8.1k points
4 votes

Answer:
x=(1)/(3)

Explanation:

You need to remember the Negative exponent rule:


a^(-n)=(1)/(a^n)

Then, having the equation
9x^(-1) - 2 = 25, you can rewrite it in this form:


(9)/(x) - 2 = 25

Now add 2 to both sides of the equation:


(9)/(x) - 2+2 = 25+2\\\\(9)/(x)=27

Multiply both sides of the equation by "x":


(x)((9)/(x))=27(x)\\\\9=27x

And finally divide both sides of the equation by 27.

The value of "x" is:


x=(9)/(27)\\\\x=(1)/(3)

User Ivan Koblik
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories