Answer:
B.
![18x^(2) y^(2) \sqrt[3]{3xy^(2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r7din4yas9sxf8ge75nd1pni5elq1qulfu.png)
Explanation:
To simplify this expression, use the fact that the root of a number (in this case is the cube root) can be expressed like a fractional exponent (1/3). Using this, the expression changes to:
![3x(648x^(4)y^(8))^((1/3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gvf42seemui9rclqt88hdfsolpyp3m4f7c.png)
Next step is to put the exponent inside the parenthesis:
Find the prime factorization of 648:
648 =3⋅3⋅3⋅3⋅2⋅2⋅2
648=3⁴∗2³
![3x(3^((4/3))2^((3/3))x^(4/3)y^(8/3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8426w6qvdh0fwnru4wsb1cmihx1dtjozxn.png)
Change all improper fractions in exponent to mixed fractions
![3x(3^(1(1/3))2^(1)x^(1(1/3))y^(2(2/3)))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fdi3fyu08hf4ukkmqp8rwy8soihs1orvgz.png)
Separate integers exponents from fractional:
![3x(3\cdot3^((1/3))\cdot 2 \cdot x\cdot x^(1/3)\cdot y^(2)\cdot y^(2/3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4qqtzad84709qfeuuke3s777041rhh8f57.png)
Re-arrange (all numbers with fractional exponents must be together):
![3x(3 \cdot 2\cdot x\cdot y^(2)\cdot 3^((1/3))x^(1/3)y^(2/3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/76ojte0tx3bpga7y64riw360tu09ix65w9.png)
Multiply the 3x with the numbers that have an integer exponent:
![18x^(2)y^(2)(3^((1/3))x^(1/3)y^(2/3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jdr826ofgygilqruhogar8jioq2kv1gw9l.png)
Take out the exponent 1/3 from the parenthesis:
![18x^(2)y^(2)(3xy^(2))^(1/3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o34fgrninomfbo0yr7c5djml886zzk8igs.png)
And change the representation of the root to use a radical symbol
![18x^(2) y^(2) \sqrt[3]{3xy^(2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r7din4yas9sxf8ge75nd1pni5elq1qulfu.png)