49.1k views
21 votes
F is a differentiable function for all x. Which of the following statements must be true?

a. d/dx ∫ f(x)dx=f(x)
b. d/dx ∫ f(t)dt= - f(x)
c. ∫ f′(x)dx=−f(x)

User Bill K
by
5.0k points

1 Answer

6 votes

The limits in the integral of the options are missing. They are :

a).
(d)/(dx) \int^2_0 f(x)dx = 0

b).
(d)/(dx) \int^x_2 f(t)dt = 0

c).
$\int^x_2f'(x)dx=f(x)$

Solution:

We known that


$(d)/(dx)\int^(g(x))_(h(x))f(t)dt = f(g(x))\cdot g'(x)-f(h(x))\cdot h'(x)$

a).
(d)/(dx) \int^2_0 f(x)dx


$=f(2) \cdot (d)/(dx)(2) - f(0)\cdot (d)/(dx)(0)$

= 0 - 0

= 0

Hence it is true.

b).
(d)/(dx) \int^x_2 f(t)dt


$=f(x)(d)/(dx)(x)-f(2)\cdot (d)/(dx)(2)$


$=f(x) \cdot 1 -f(2)* 0 $

= f(x)

Hence it is true.

c).
$\int^x_2f'(x)dx


$\left[f(x)\right]^x_2 = f(x)-f(2)$


$\\eq f(x) $

Hence it is false.

Therefore option a) and b). are true.

User Wenjun
by
5.3k points