49.1k views
21 votes
F is a differentiable function for all x. Which of the following statements must be true?

a. d/dx ∫ f(x)dx=f(x)
b. d/dx ∫ f(t)dt= - f(x)
c. ∫ f′(x)dx=−f(x)

User Bill K
by
7.8k points

1 Answer

6 votes

The limits in the integral of the options are missing. They are :

a).
(d)/(dx) \int^2_0 f(x)dx = 0

b).
(d)/(dx) \int^x_2 f(t)dt = 0

c).
$\int^x_2f'(x)dx=f(x)$

Solution:

We known that


$(d)/(dx)\int^(g(x))_(h(x))f(t)dt = f(g(x))\cdot g'(x)-f(h(x))\cdot h'(x)$

a).
(d)/(dx) \int^2_0 f(x)dx


$=f(2) \cdot (d)/(dx)(2) - f(0)\cdot (d)/(dx)(0)$

= 0 - 0

= 0

Hence it is true.

b).
(d)/(dx) \int^x_2 f(t)dt


$=f(x)(d)/(dx)(x)-f(2)\cdot (d)/(dx)(2)$


$=f(x) \cdot 1 -f(2)* 0 $

= f(x)

Hence it is true.

c).
$\int^x_2f'(x)dx


$\left[f(x)\right]^x_2 = f(x)-f(2)$


$\\eq f(x) $

Hence it is false.

Therefore option a) and b). are true.

User Wenjun
by
9.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.