15.0k views
1 vote
Find the arc length of the curve below on the given interval by integrating with respect to x.

y=2x^(3/2); [0, 1]

User Icilma
by
3.9k points

1 Answer

9 votes

The arc length of
y=2x^(\frac32) over [0, 1] is given by the integral,


L=\displaystyle\int_0^1\sqrt{1+\left((\mathrm dy)/(\mathrm dx)\right)^2}\,\mathrm dx

Differentiate y with respect to x using the power rule:


(\mathrm dy)/(\mathrm dx)=\frac32*2 x^(\frac32-1)=3x^(\frac12)

Then the integral becomes


L=\displaystyle\int_0^1\sqrt{1+\left(3x^(\frac12)\right)^2}\,\mathrm dx=\int_0^1√(1+9x)\,\mathrm dx

Substitute u = 1 + 9x and du = 9 dx :


L=\displaystyle\int_0^1√(1+9x)\,\mathrm dx=\frac19\int_1^(10)\sqrt u\,\mathrm du


L=\displaystyle\frac19\left(\frac23u^(\frac32)\right)\bigg|_1^(10)


L=\frac2{27}\left(10^(\frac32)-1^(\frac32)\right)


L=\boxed{\frac2{27}\left(10^(\frac32)-1\right)}

User Omar Lahlou
by
4.5k points