221k views
5 votes
Find the slope of a line perpendicular to 2y = -6x +8

User BlastWave
by
7.9k points

1 Answer

6 votes


\bf 2y=-6x+8\implies y=\cfrac{-6x+8}{2}\implies y=\cfrac{-6x}{2}+\cfrac{8}{2} \\\\\\ y=-3x+4\impliedby \begin{array}ll \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill


\bf \stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{-3\implies -\cfrac{3}{1}}\qquad \qquad \qquad \stackrel{reciprocal}{-\cfrac{1}{3}}\qquad \stackrel{negative~reciprocal}{+\cfrac{1}{3}\implies \cfrac{1}{3}}}

User Mgroat
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories