111k views
17 votes
Homogenuos function who can solve it

Homogenuos function who can solve it-example-1
User Yuval Roth
by
8.1k points

1 Answer

5 votes

Answer:

a) f(x) is a homogenous function of degree '1'

b) f(x) is a homogenous function of degree '2'

Explanation:

Step(i):-

Homogenous function

If f(x) is a homogenous function of degree 'n' then


f(k x ,k y) = k^(n) f(x, y)

a)

Given
f(x, y) = \sqrt{x^(2) +3xy+2y^(2) }


f(kx, ky) = \sqrt{(kx)^(2) +3kx(ky)+2(ky)^(2) }


f(kx, ky) = \sqrt{(k)^(2) (x)^(2) +3k^(2) (xy)+2(k)^(2) y^(2) }


f(kx, ky) =( k^(2))^{(1)/(2) } ( \sqrt{(x)^(2) +3 (xy)+2 y^(2) })

f( k x , k y ) = k f( x, y)

∴ f(x) is a homogenous function of degree '1'

Step(ii):-

b)


f(x, y) = \sqrt{x^(4) +3x^(2) y+5y^(2) x^(2) -2y^(4) }


f(kx, ky) = \sqrt{(k x)^(4) +3(k x)^(2) y+5(k y)^(2) (k x)^(2) -2(k y)^(4) }


f(kx, ky) = (k^(4))^{(1)/(2) } \sqrt{( x)^(4) +3( x)^(3) y+5( y)^(2) ( x)^(2) -2( y)^(4) }

f(k x , k y ) = k² f( x , y )

∴ f(x) is a homogenous function of degree '2'

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories