111k views
17 votes
Homogenuos function who can solve it

Homogenuos function who can solve it-example-1
User Yuval Roth
by
4.1k points

1 Answer

5 votes

Answer:

a) f(x) is a homogenous function of degree '1'

b) f(x) is a homogenous function of degree '2'

Explanation:

Step(i):-

Homogenous function

If f(x) is a homogenous function of degree 'n' then


f(k x ,k y) = k^(n) f(x, y)

a)

Given
f(x, y) = \sqrt{x^(2) +3xy+2y^(2) }


f(kx, ky) = \sqrt{(kx)^(2) +3kx(ky)+2(ky)^(2) }


f(kx, ky) = \sqrt{(k)^(2) (x)^(2) +3k^(2) (xy)+2(k)^(2) y^(2) }


f(kx, ky) =( k^(2))^{(1)/(2) } ( \sqrt{(x)^(2) +3 (xy)+2 y^(2) })

f( k x , k y ) = k f( x, y)

∴ f(x) is a homogenous function of degree '1'

Step(ii):-

b)


f(x, y) = \sqrt{x^(4) +3x^(2) y+5y^(2) x^(2) -2y^(4) }


f(kx, ky) = \sqrt{(k x)^(4) +3(k x)^(2) y+5(k y)^(2) (k x)^(2) -2(k y)^(4) }


f(kx, ky) = (k^(4))^{(1)/(2) } \sqrt{( x)^(4) +3( x)^(3) y+5( y)^(2) ( x)^(2) -2( y)^(4) }

f(k x , k y ) = k² f( x , y )

∴ f(x) is a homogenous function of degree '2'