211k views
4 votes
For questions 2 and 4 calculate the perimeter and 4 questions 6/8 and 10 calculate the area

For questions 2 and 4 calculate the perimeter and 4 questions 6/8 and 10 calculate-example-1

1 Answer

3 votes

Answer:

Part 2)
P=2[√(20)+√(45)]\ units or
P=22.36\ units

Part 4)
P=[19+√(17)]\ units or
P=23.12\ units

Part 6)
A=36\ units^(2)

Part 8)
A=16\ units^(2)

Part 10)
A=6.05\ units^(2)

Step-by-step explanation:

we know that

The formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

Part 2) we have the rectangle ABCD


A(-4,-4),B(-2,0),C(4,-3),D(2,-7)

Remember that in a rectangle opposite sides are congruent

step 1

Find the distance AB


A(-4,-4),B(-2,0)

substitute in the formula


AB=\sqrt{(0+4)^(2)+(-2+4)^(2)}


AB=\sqrt{(4)^(2)+(2)^(2)}


AB=√(20)\ units

step 2

Find the distance BC


B(-2,0),C(4,-3)

substitute in the formula


BC=\sqrt{(-3-0)^(2)+(4+2)^(2)}


BC=\sqrt{(-3)^(2)+(6)^(2)}


BC=√(45)\ units

step 3

Find the perimeter

The perimeter is equal to


P=2[AB+BC]

substitute


P=2[√(20)+√(45)]\ units

or


P=22.36\ units

Part 4) we have the quadrilateral ABCD


A(-2,-3),B(1,1),C(7,1),D(6,-3)

step 1

Find the distance AB


A(-2,-3),B(1,1)

substitute in the formula


AB=\sqrt{(1+3)^(2)+(1+2)^(2)}


AB=\sqrt{(4)^(2)+(3)^(2)}


AB=5\ units

step 2

Find the distance BC


B(1,1),C(7,1)

substitute in the formula


BC=\sqrt{(1-1)^(2)+(7-1)^(2)}


BC=\sqrt{(0)^(2)+(6)^(2)}


BC=6\ units

step 3

Find the distance CD


C(7,1),D(6,-3)

substitute in the formula


CD=\sqrt{(-3-1)^(2)+(6-7)^(2)}


CD=\sqrt{(-4)^(2)+(-1)^(2)}


CD=√(17)\ units

step 4

Find the distance AD


A(-2,-3),D(6,-3)

substitute in the formula


AD=\sqrt{(-3+3)^(2)+(6+2)^(2)}


AD=\sqrt{(0)^(2)+(8)^(2)}


AD=8\ units

step 5

Find the perimeter

The perimeter is equal to


P=AB+BC+CD+AD

substitute


P=[5+6+√(17)+8]\ units


P=[19+√(17)]\ units

or


P=23.12\ units

Part 6) Calculate the area of rectangle ABCD


A(-1,5),B(3,5),C(3,-4),D(-1,-4)

Remember that in a rectangle opposite sides are congruent

step 1

Find the distance AB


A(-1,5),B(3,5)

substitute in the formula


AB=\sqrt{(5-5)^(2)+(3+1)^(2)}


AB=\sqrt{(0)^(2)+(4)^(2)}


AB=4\ units

step 2

Find the distance BC


B(3,5),C(3,-4)

substitute in the formula


BC=\sqrt{(-4-5)^(2)+(3-3)^(2)}


BC=\sqrt{(-9)^(2)+(0)^(2)}


BC=9\ units

step 3

Find the area

The area is equal to


A=[AB*BC]

substitute


A=[4*9]=36\ units^(2)

Part 8) Calculate the area of right triangle ABC


A(-3,3),B(-3,-1),C(5,-1)

step 1

Find the distance AB


A(-3,3),B(-3,-1)

substitute in the formula


AB=\sqrt{(-1-3)^(2)+(-3+3)^(2)}


AB=\sqrt{(-4)^(2)+(0)^(2)}


AB=4\ units

step 2

Find the distance BC


B(-3,-1),C(5,-1)

substitute in the formula


BC=\sqrt{(-1+1)^(2)+(5+3)^(2)}


BC=\sqrt{(0)^(2)+(8)^(2)}


BC=8\ units

step 3

Find the distance AC


A(-3,3),C(5,-1)

substitute in the formula


AC=\sqrt{(-1-3)^(2)+(5+3)^(2)}


AC=\sqrt{(-4)^(2)+(8)^(2)}


AC=√(80)\ units -----> is the hypotenuse

step 4

Find the area

The area is equal to


A=(1/2)AB*BC

substitute


A=(1/2)(4*8)=16\ units^(2)

Part 10) Calculate the area of triangle ABC


A(3,0),B(1,8),C(2,10)

step 1

Find the distance AB


A(3,0),B(1,8)

substitute in the formula


AB=\sqrt{(8-0)^(2)+(1-3)^(2)}


AB=\sqrt{(8)^(2)+(-2)^(2)}


AB=√(68)\ units

step 2

Find the distance BC


B(1,8),C(2,10)

substitute in the formula


BC=\sqrt{(10-8)^(2)+(2-1)^(2)}


BC=\sqrt{(2)^(2)+(1)^(2)}


BC=√(5)\ units

step 3

Find the distance AC


A(3,0),C(2,10)

substitute in the formula


AC=\sqrt{(10-0)^(2)+(2-3)^(2)}


AC=\sqrt{(10)^(2)+(-1)^(2)}


AC=√(101)\ units

step 4

we know that

Heron's Formula is a method for calculating the area of a triangle when you know the lengths of all three sides.

Let

a,b,c be the lengths of the sides of a triangle.

The area is given by:


A=√(p(p-a)(p-b)(p-c))

where

p is half the perimeter

p=
(a+b+c)/(2)

we have


a=AB=√(68)=8.25\ units


b=BC=√(5)=2.24\ units


c=AC=√(101)=10.05\ units

p=
(8.25+2.24+10.05)/(2)=10.27\ units

Find the area


A=√(10.27*(10.27-8.25)(10.27-2.24)(10.27-10.05))


A=√(10.27*(2.02)(8.03)(0.22))


A=6.05\ units^(2)

User JsfQ
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories