Answer:
![(r,\theta); (√(5) , tan^(-1)((x)/(y)))\\(r,\theta); (-√(5) , -tan^(-1)((x)/(y)))](https://img.qammunity.org/2020/formulas/mathematics/high-school/8bbnwrk790c5jlf2dvfffnn39eqljbsbrj.png)
Explanation:
Here we are given our rectangular coordinates as (2,-1) . We have to convert this into polar coordinates. The formula for conversion into polar form is
![r=√(x^2+y^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/25hu3uju6oqdz8fk189nvpn9or80vygf5x.png)
![\theta=tan^(-1)((x)/(y))](https://img.qammunity.org/2020/formulas/mathematics/high-school/7026vff8en7xbxt4wxzieoxlp4cxqzw09n.png)
Substituting the values of x and y in the above formulas we get
![r=√(2^2+(-1)^2)\\r=√(4+1)\\r=√(5)\\r=-√(5)\\](https://img.qammunity.org/2020/formulas/mathematics/high-school/ybd5xae69aiilfaa6xnky88xgs80yjmypi.png)
![\theta=tan^(-1)((-1)/(2))](https://img.qammunity.org/2020/formulas/mathematics/high-school/zmrketcfz60ro51qnoeldqqx3jy57xeeh5.png)
Hence our polar coordinates are
![r=(√(5),tan^(-1)((-1)/(2)) )\\r=(-√(5),tan^(-1)((-1)/(2)) )\\](https://img.qammunity.org/2020/formulas/mathematics/high-school/za401k0hm7n096qmryixxtbrwrs2q8b8y3.png)