30.0k views
2 votes
Which polar coordinates represent the same point as the rectangular coordinate (2,-1?

2 Answers

5 votes


\bf (\stackrel{a}{2}~,~\stackrel{b}{-1})\qquad \begin{cases} r=√(a^2+b^2)\\\\ \theta =tan^(-1)\left( (b)/(a) \right) \end{cases} \\\\[-0.35em] ~\dotfill\\\\ r=√(2^2+(-1)^2)\implies r=√(5) \\\\\\ \theta =tan^(-1)\left( \cfrac{-1}{2} \right)\implies \theta \approx -26.57^o\implies \theta \approx 333.43^o \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill (√(5)~~,~~333.43^o)~\hfill

User DarkAjax
by
4.6k points
2 votes

Answer:


(r,\theta); (√(5) , tan^(-1)((x)/(y)))\\(r,\theta); (-√(5) , -tan^(-1)((x)/(y)))

Explanation:

Here we are given our rectangular coordinates as (2,-1) . We have to convert this into polar coordinates. The formula for conversion into polar form is


r=√(x^2+y^2)


\theta=tan^(-1)((x)/(y))

Substituting the values of x and y in the above formulas we get


r=√(2^2+(-1)^2)\\r=√(4+1)\\r=√(5)\\r=-√(5)\\


\theta=tan^(-1)((-1)/(2))

Hence our polar coordinates are


r=(√(5),tan^(-1)((-1)/(2)) )\\r=(-√(5),tan^(-1)((-1)/(2)) )\\

User Danika
by
4.6k points