227k views
1 vote
Use geometric series to find the fraction of 0.8967898989

User Nisman
by
7.6k points

1 Answer

3 votes

I'm guessing the repeating part is 89 at the end, so that


x=0.8967\overline89\implies10^4x=8967.\overline{89}

Then


10^4x=8967+\displaystyle89\sum_(i=1)^\infty\frac1{100^i}


10^4x=8967+89\left(\frac1{1-\frac1{100}}-1\right)


10^4x=8967+(89)/(99)


x=(8967)/(10^4)+(89)/(99\cdot10^4)


x=(443911)/(495000)

###

An arguably quicker way without using geometric series:


10^4x=8967.\overline{89}


10^6x=896789.\overline{89}


10^6x-10^4x=887822


x=(887822)/(10^6-10^4)=(443911)/(495000)

User Maweeras
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories