227k views
1 vote
Use geometric series to find the fraction of 0.8967898989

User Nisman
by
6.1k points

1 Answer

3 votes

I'm guessing the repeating part is 89 at the end, so that


x=0.8967\overline89\implies10^4x=8967.\overline{89}

Then


10^4x=8967+\displaystyle89\sum_(i=1)^\infty\frac1{100^i}


10^4x=8967+89\left(\frac1{1-\frac1{100}}-1\right)


10^4x=8967+(89)/(99)


x=(8967)/(10^4)+(89)/(99\cdot10^4)


x=(443911)/(495000)

###

An arguably quicker way without using geometric series:


10^4x=8967.\overline{89}


10^6x=896789.\overline{89}


10^6x-10^4x=887822


x=(887822)/(10^6-10^4)=(443911)/(495000)

User Maweeras
by
6.4k points