Answer: Option D
![f(x)=(x+3)^2 -k](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3hykrcpfs7ajm1zebhdo0y5l8yecksa01j.png)
Explanation:
For a quadratic function of the form
![ax ^ 2 + bx + c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7bl6z87iob0p6ynzghmbvo3xf81jnvbsc8.png)
The x coordinate of the vertice is:
![x =-(b)/(2a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ogfmyc52cr168tbllceadccq8lmtq20uk7.png)
In this case the function is:
![f(x)=x^2+6x-2\\\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wsnd1u6csiv5p5yqzn01tdzblox5l9s20o.png)
So
![a=1\\b=6\\c=-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c7ljb70bjr2w0pye76ge781h5y0p2zsxiu.png)
The x coordinate of the vertice is:
![x=-(6)/(2*1)\\\\x=-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jkbiz6eqmhr4xg214vn5ctpjh0j9w8xeb5.png)
The y coordinate of the vertice is:
![f(-3) = (-3)^2 +6(-3) -2\\\\f(-3)=-11](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q017jg5s0yjt5vdq0kpuzaq988yaus8cd4.png)
The vertice is: (-3, -11)
The form e vertice for a quadratic equation is:
![f(x)=(x-h)^2 +k](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v42uc10keh3xmo6sod63r9khc1vy644cq8.png)
Where
the x coordinate of the vertice is h and the y coordinate of the vertice is k.
Then h=-3 and k =-11
Finally the equation
in vertex form is:
![f(x)=(x+3)^2 -k](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3hykrcpfs7ajm1zebhdo0y5l8yecksa01j.png)