147k views
1 vote
Q4 please help thanks

Q4 please help thanks-example-1
User Adrii
by
8.3k points

2 Answers

2 votes

Answer:

see explanation

Explanation:

The area of the shaded triangle = area of ΔABD - area of ΔADC

A of ΔABD =
(1)/(2) × AD × BD

A =
(1)/(2) ×
(√(2) )/(2) ×
(√(2) )/(2)

=
(2)/(8) =
(1)/(4)

--------------------------------------------------------------------------

A of ΔACD =
(1)/(2) × AD × DC

A =
(1)/(2) ×
(√(2) )/(2) ×
(√(3) )/(3)

A =
(√(6) )/(12)

-------------------------------------------------------------------------

shaded area =
(1)/(4) -
(√(6) )/(12)

=
(3)/(12) -
(√(6) )/(12) =
(3-√(6) )/(12)

User Shanyu
by
7.8k points
4 votes

Answer:


\large\boxed{A==(3-\sqrt6)/(12)\ cm^2}

Explanation:

The shaded region is the triangle with base b and height h.


b=BD-CD\to b=(\sqrt2)/(2)-(\sqrt3)/(3)=(3\sqrt2)/((2)(3))-(2\sqrt3)/((2)(3))=(3\sqrt2-2\sqrt3)/(6)\\\\h=AD\to h=(\sqrt2)/(2)

The formula of an area of a triangle:


A=(bh)/(2)

Substitute:


A=((3\sqrt2-2\sqrt3)/(6)\cdot(\sqrt2)/(2))/(2)=\left((3\sqrt2-2\sqrt3)/(6)\right)\left((\sqrt2)/(2)\right)\left((1)/(2)\right)\\\\\text{use the distributive property}\ a(b+c)=ab+ac\\\\=((3\sqrt2-2\sqrt3)(\sqrt2))/((6)(2)(2))=((3\sqrt2)(\sqrt2)-(2\sqrt3)(\sqrt2))/(24)\\\\\text{use}\ √(a)\cdot√(a)=a\ \text{and}\ √(ab)=√(a)\cdot√(b)\\\\=((3)(2)-2\sqrt6)/(24)=(2(3-\sqrt6))/(24)=(3-\sqrt6)/(12)

User Pondikpa Tchabao
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories