10.9k views
0 votes
Please help me for the love of God if i fail I have to repeat the class

Given : sin ∅= 4/5 | cos x = -5/13 (∅: quadrant I, x: quadrant II)

what is:


1. sin(∅+x)


2. cos(∅-x)


3. tan(∅+x)


4. sin2 ∅


5. cos 2x


6. tan2 ∅


7. tan 1/2x


8. sin 3 ∅

User Carl Reid
by
4.5k points

1 Answer

2 votes


\theta is in quadrant I, so
\cos\theta>0.


x is in quadrant II, so
\sin x>0.

Recall that for any angle
\alpha,


\sin^2\alpha+\cos^2\alpha=1

Then with the conditions determined above, we get


\cos\theta=√(1-\left(\frac45\right)^2)=\frac35

and


\sin x=\sqrt{1-\left(-\frac5{13}\right)^2}=(12)/(13)

Now recall the compound angle formulas:


\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta


\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta


\sin2\alpha=2\sin\alpha\cos\alpha


\cos2\alpha=\cos^2\alpha-\sin^2\alpha

as well as the definition of tangent:


\tan\alpha=(\sin\alpha)/(\cos\alpha)

Then

1.
\sin(\theta+x)=\sin\theta\cos x+\cos\theta\sin x=(16)/(65)

2.
\cos(\theta-x)=\cos\theta\cos x+\sin\theta\sin x=(33)/(65)

3.
\tan(\theta+x)=(\sin(\theta+x))/(\cos(\theta+x))=-(16)/(63)

4.
\sin2\theta=2\sin\theta\cos\theta=(24)/(25)

5.
\cos2x=\cos^2x-\sin^2x=-(119)/(169)

6.
\tan2\theta=(\sin2\theta)/(\cos2\theta)=-\frac{24}7

7. A bit more work required here. Recall the half-angle identities:


\cos^2\frac\alpha2=\frac{1+\cos\alpha}2


\sin^2\frac\alpha2=\frac{1-\cos\alpha}2


\implies\tan^2\frac\alpha2=(1-\cos\alpha)/(1+\cos\alpha)

Because
x is in quadrant II, we know that
\frac x2 is in quadrant I. Specifically, we know
\frac\pi2<x<\pi, so
\frac\pi4<\frac x2<\frac\pi2. In this quadrant, we have
\tan\frac x2>0, so


\tan\frac x2=\sqrt{(1-\cos x)/(1+\cos x)}=\frac32

8.
\sin3\theta=\sin(\theta+2\theta)=(44)/(125)

User Jonell
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.