is in quadrant I, so
.
is in quadrant II, so
.
Recall that for any angle
,
![\sin^2\alpha+\cos^2\alpha=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gqr8emfgo0lor37wji42ddgg6lhnm7v6po.png)
Then with the conditions determined above, we get
![\cos\theta=√(1-\left(\frac45\right)^2)=\frac35](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7amrj0zg7v5qg79ls4iyj6uocrxy2v7h49.png)
and
![\sin x=\sqrt{1-\left(-\frac5{13}\right)^2}=(12)/(13)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bhnvmdw6ng7mc0dj56qqgljdmtgk5201uj.png)
Now recall the compound angle formulas:
![\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta](https://img.qammunity.org/2020/formulas/mathematics/college/mdlitqmmn5nb864ckzjn45wbwhaq2glazw.png)
![\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xe52h52n5p337k22q322zinrqu5c09poro.png)
![\sin2\alpha=2\sin\alpha\cos\alpha](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8nekn0s4xfw3kjydvii8ijdrx793tp22s8.png)
![\cos2\alpha=\cos^2\alpha-\sin^2\alpha](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k8m5s03urwzfd14b3ruqgs8e8j88xsknqb.png)
as well as the definition of tangent:
![\tan\alpha=(\sin\alpha)/(\cos\alpha)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yjxzllk1n50lzii640qo99w27xh0qrc5zh.png)
Then
1.
![\sin(\theta+x)=\sin\theta\cos x+\cos\theta\sin x=(16)/(65)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gkgeeqh92q65d0qpit7g0bsstwwanlzn8v.png)
2.
![\cos(\theta-x)=\cos\theta\cos x+\sin\theta\sin x=(33)/(65)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ihnq3j18l74phcl548keoy4021kjhehfkg.png)
3.
![\tan(\theta+x)=(\sin(\theta+x))/(\cos(\theta+x))=-(16)/(63)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vxm2mrrmq177b4y50p6rewhkxn6v5a8g2n.png)
4.
![\sin2\theta=2\sin\theta\cos\theta=(24)/(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1y0bgc8grviuk06x5syi1k9epti2128jrp.png)
5.
![\cos2x=\cos^2x-\sin^2x=-(119)/(169)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/btv879cvj3o8048rxvqnq46rgwd8ui1u9c.png)
6.
![\tan2\theta=(\sin2\theta)/(\cos2\theta)=-\frac{24}7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k12079ayxvwllphr8aiuhwdpnenvj0hzkj.png)
7. A bit more work required here. Recall the half-angle identities:
![\cos^2\frac\alpha2=\frac{1+\cos\alpha}2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yemr6esql56qt4c2eoy67szki8swiy8hy0.png)
![\sin^2\frac\alpha2=\frac{1-\cos\alpha}2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8z2rpo9pd97wgaybw304k2pis2tj0jp0n5.png)
![\implies\tan^2\frac\alpha2=(1-\cos\alpha)/(1+\cos\alpha)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b2x3voest90fjfs1j5aonzb4v2vbprp21s.png)
Because
is in quadrant II, we know that
is in quadrant I. Specifically, we know
, so
. In this quadrant, we have
, so
![\tan\frac x2=\sqrt{(1-\cos x)/(1+\cos x)}=\frac32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n202raai3f8qvxtu4n7c0nkpc0gjrw8fid.png)
8.
![\sin3\theta=\sin(\theta+2\theta)=(44)/(125)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bvvsu77cu3gmb4kx2j42w0citfw5ohryai.png)