Answer:
Option (A) and (D) are not trigonometric identities.
Explanation:
Option (A ) tan²x + sec²x = 1
Since
and
![secx =(1)/(cosx)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8rxokz4263yjtfvr9fly543imq26w4c1x0.png)
put these in left hand side of tan²x + sec²x = 1
+
![((1)/(cosx))^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xzpn1935bzxagiq2ejvg24ph4msdysq0ih.png)
+
![((1)/(cos^(2)x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9gdubl9wf2umsd0jbss1w0ip2ynojvpnxm.png)
Take L.C.M of above expression,
![((sin^(2)x + 1)/(cos^(2)x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oly94g181pemsv59dp22dj83lv6c2zvq52.png)
since, sin²x = 1 - cos²x
![((1-cos^(2)x+1)/(cos^(2)x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kumtct5indh2sff5b56cp7j8kwseva2z9y.png)
![((2-cos^(2)x)/(cos^(2)x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hglq8k2iem4f7c3jnnbf40cjxd5fva2j8j.png)
we are not getting 1
so, this is not a trigonometric identity.
Option (A) is correct option
Option (B) sin²x + cos²x = 1
This is an trigonometric identity
Option (C) sec²x - tan²x = 1
Divide the trigonometric identity sin²x + cos²x = 1 both the sides by cos²x so, we get
![(sin^(2)x)/(cos^(2)x)+(cos^(2)x)/(cos^(2)x)\,=\,(1)/(cos^(2)x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mxzwno2g2wyhnmntm4m2k9xm2vcu7wc48h.png)
![tan^(2)x}+1\,=\,sec^(2)x}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w33kcn380nk8xy1n55yqr5i2chxqctxp45.png)
subtract both the sides by tan²x in above expression
![tan^(2)x}+1\,-tan^(2)x=\,sec^(2)x-tan^(2)x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lnpjwaw1ee6xsndlprr5lz14n8m96xfozb.png)
![1=\,sec^(2)x}-tan^(2)x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xtjssoqszeyst2qwr6telnprlm6qftnufc.png)
Hence, this is the trigonometric identity.
Option (D) sec²x + cosec²x = 1
Since
and
![cosecx =(1)/(sinx)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8oyaw5y4issedp2kw648t7hu3u67i4wlpe.png)
put these in left hand side of sec²x + cosec²x = 1
![((1)/(cosx))^(2)+((1)/(sinx))^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hg2i3d7vddwkmw82n2mqfxdioyzfyqb8vy.png)
![(1)/(cos^(2)x)+(1)/(sin^(2)x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xl53tgep07fuql2v5zb5jcrofbzzzc6a1t.png)
we are not getting 1
so, this is not a trigonometric identity.
Option (D) is correct option.
Hence, Option (A) and (D) are not trigonometric identities.