8.1k views
0 votes
Which of the following are not trigonometric identities? Check all that apply. A. tan^2x+sec^2x=1. B. sin^2x+cos^2x=1. C. sec^2x-tan^2x=1. D. sec^2x+csc^2x=1.

2 Answers

2 votes

Answer:

a

Explanation:

4 votes

Answer:

Option (A) and (D) are not trigonometric identities.

Explanation:

Option (A ) tan²x + sec²x = 1

Since
tanx =(sinx)/(cosx) and
secx =(1)/(cosx)

put these in left hand side of tan²x + sec²x = 1


((sinx)/(cosx))^(2) +
((1)/(cosx))^(2)


((sin^(2)x)/(cos^(2)x)) +
((1)/(cos^(2)x))

Take L.C.M of above expression,


((sin^(2)x + 1)/(cos^(2)x))

since, sin²x = 1 - cos²x


((1-cos^(2)x+1)/(cos^(2)x))


((2-cos^(2)x)/(cos^(2)x))

we are not getting 1

so, this is not a trigonometric identity.

Option (A) is correct option

Option (B) sin²x + cos²x = 1

This is an trigonometric identity

Option (C) sec²x - tan²x = 1

Divide the trigonometric identity sin²x + cos²x = 1 both the sides by cos²x so, we get


(sin^(2)x)/(cos^(2)x)+(cos^(2)x)/(cos^(2)x)\,=\,(1)/(cos^(2)x)


tan^(2)x}+1\,=\,sec^(2)x}

subtract both the sides by tan²x in above expression


tan^(2)x}+1\,-tan^(2)x=\,sec^(2)x-tan^(2)x


1=\,sec^(2)x}-tan^(2)x

Hence, this is the trigonometric identity.

Option (D) sec²x + cosec²x = 1

Since
secx =(1)/(cosx) and
cosecx =(1)/(sinx)

put these in left hand side of sec²x + cosec²x = 1


((1)/(cosx))^(2)+((1)/(sinx))^(2)


(1)/(cos^(2)x)+(1)/(sin^(2)x)

we are not getting 1

so, this is not a trigonometric identity.

Option (D) is correct option.

Hence, Option (A) and (D) are not trigonometric identities.

User Geo
by
5.1k points