1)
![1.11\cdot 10^(-7) J](https://img.qammunity.org/2020/formulas/physics/high-school/pc8aagh07mb28ilkxwq30glnyom0f7n8sr.png)
The capacitance of a parallel-plate capacitor is given by:
![C=(\epsilon_0 A)/(d)](https://img.qammunity.org/2020/formulas/physics/high-school/wqs2pvo8v7y0qyljv5evbmv3tbnjjqur87.png)
where
is the vacuum permittivity
A is the area of each plate
d is the distance between the plates
Here, the radius of each plate is
![r=(2.0 cm)/(2)=1.0 cm=0.01 m](https://img.qammunity.org/2020/formulas/physics/high-school/cmt2cl337vz5p3pmjklt34ddqtco1icgdn.png)
so the area is
![A=\pi r^2 = \pi (0.01 m)^2=3.14\cdot 10^(-4) m^2](https://img.qammunity.org/2020/formulas/physics/high-school/cj33if5dkriym99kgow3mnj2bewyx3vj3w.png)
While the separation between the plates is
![d=0.50 mm=5\cdot 10^(-4) m](https://img.qammunity.org/2020/formulas/physics/high-school/4vwebatl3c8iqfsuuogq72x6jeq3h6ulz8.png)
So the capacitance is
![C=((8.85\cdot 10^(-12) F/m)(3.14\cdot 10^(-4) m^2))/(5\cdot 10^(-4) m)=5.56\cdot 10^(-12) F](https://img.qammunity.org/2020/formulas/physics/high-school/a5slva5381cjwmxx825zfc29i1ovxbrcrr.png)
And now we can find the energy stored,which is given by:
![U=(1)/(2)CV^2=(1)/(2)(5.56\cdot 10^(-12) F/m)(200 V)^2=1.11\cdot 10^(-7) J](https://img.qammunity.org/2020/formulas/physics/high-school/x6oenquw0qbpt17182y4npj7uho65vdnku.png)
2) 0.71 J/m^3
The magnitude of the electric field is given by
![E=(V)/(d)=(200 V)/(5\cdot 10^(-4) m)=4\cdot 10^5 V/m](https://img.qammunity.org/2020/formulas/physics/high-school/v9pmyxkav2tbqap0agsnkbabuhih94vi1y.png)
and the energy density of the electric field is given by
![u=(1)/(2)\epsilon_0 E^2](https://img.qammunity.org/2020/formulas/physics/high-school/josf8yozuf8g0p18ynxs61e4w7glfx9kjm.png)
and using
, we find
![u=(1)/(2)(8.85\cdot 10^(-12) F/m)(4\cdot 10^5 V/m)^2=0.71 J/m^3](https://img.qammunity.org/2020/formulas/physics/high-school/vuni3hglw9whdrc30atjykitjqrn1f0ict.png)