99.4k views
2 votes
The sum of 30 times (1/3)^(n-1) from 1 to infinity

User Mysteryos
by
7.8k points

1 Answer

1 vote

Let


S_n=\displaystyle1+\frac13+\frac1{3^2}+\cdots+\frac1{3^n}

Then


\frac13S_n=\displaystyle\frac13+\frac1{3^2}+\frac1{3^3}+\cdots+\frac1{3^(n+1)}

and


S_n-\frac13S_n=\frac23S_n=1-\frac1{3^(n+1)}\implies S_n=\frac32-\frac1{2\cdot3^n}

and as
n\to\infty, we end up with


\displaystyle\lim_(n\to\infty)S_n=\lim_(n\to\infty)\sum_(i=1)^(n+1)\frac1{3^(i-1)}=\lim_(n\to\infty)\left(\frac32-\frac1{2\cdot3^n}\right)=\frac32

So we have


\displaystyle\sum_(n=1)^\infty30\left(\frac13\right)^(n-1)=30\cdot\frac32=45

User Jmpena
by
9.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories