99.4k views
2 votes
The sum of 30 times (1/3)^(n-1) from 1 to infinity

User Mysteryos
by
4.3k points

1 Answer

1 vote

Let


S_n=\displaystyle1+\frac13+\frac1{3^2}+\cdots+\frac1{3^n}

Then


\frac13S_n=\displaystyle\frac13+\frac1{3^2}+\frac1{3^3}+\cdots+\frac1{3^(n+1)}

and


S_n-\frac13S_n=\frac23S_n=1-\frac1{3^(n+1)}\implies S_n=\frac32-\frac1{2\cdot3^n}

and as
n\to\infty, we end up with


\displaystyle\lim_(n\to\infty)S_n=\lim_(n\to\infty)\sum_(i=1)^(n+1)\frac1{3^(i-1)}=\lim_(n\to\infty)\left(\frac32-\frac1{2\cdot3^n}\right)=\frac32

So we have


\displaystyle\sum_(n=1)^\infty30\left(\frac13\right)^(n-1)=30\cdot\frac32=45

User Jmpena
by
5.3k points