Answer:
smallest value of x = -1
Largest value of x = 7
Explanation:
![x^2-6x=7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l95t97cu434kxx9cfz1lhwe6y80c68bfpp.png)
coefficient of x = -6
Half of the coefficient of x = -6/2 = -3
Square of the half value
![=(-3)^2=9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wudh63wtlyx9ycymesctwv54rm89bsu6n2.png)
Add the square value on both sides of equation
![x^2-6x+9=7+9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wx9d0fibu4otrzjcb42hrmsi2ing7biax1.png)
![(x-3)^2=16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b4g5hut7yh46fziy8kw6iqg3b3j8qox5vi.png)
Take square root
![x-3= \pm √(16)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vwn8wklhvf3jckggtpli8kipdykatm4l6d.png)
![x-3= \pm 4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rr1sr9legwozodu4apxyrotz0bwvz0wxze.png)
or
![x-3=-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cd9fj15ga9lupq9vno2afoqmouf05bbvc0.png)
or
![x=-4+3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/11f9aaymo5939fu8nsk28rww3o0lleztpi.png)
or
![x=-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/whlztoonow2sjij0bijxz0wnqgda4xeqq1.png)
Hence smallest value of x = -1
Largest value of x = 7