ANSWER
![x =1 +(1)/(2) √( 10) \: or \: x =1 - (1)/(2)\: √(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/87kn7csw14wd3l85sg1hawszdel7tdnj10.png)
Step-by-step explanation
The given quadratic equation is
![2 {x}^(2) - 4x - 3 = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wejx5vq5ykv2u3icrcdwc9vpl0ev619qow.png)
This function is of the form:
![a{x}^(2) + bx + c = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bz99ghipekzwp42pgxca3fthmon3kw2bz8.png)
This implies that:
a=2, b=-4 and c=-3.
We can solve this equation using the quadratic formula:
![x = \frac{ - b \pm \: \sqrt{ {b}^(2) - 4ac} }{2a}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hmipikl9td4tnhay6i1bv8h2ozrorfn68m.png)
We substitute the values into the quadratic formula to obtain;
![x = \frac{ - - 4 \pm \: \sqrt{ {( - 4)}^(2) - 4(2)( - 3)} }{2(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/149drasz601c6xkakiobt1ad4shrit8t7l.png)
![x = (4 \pm \: √( 40) )/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/grzjjtajzrmg75ekz43cqn04gey6758tqm.png)
![x = (4 \pm \: 2√( 10) )/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s700gke6wa8wynij2q634cl4tz5ndv1ah0.png)
![x =1\pm \: (1)/(2) √(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hyan832v55bn6pndwbsdiwno4pxzk6ynya.png)
![x =1 +(1)/(2) √( 10) \: or \: x =1 - \: (1)/(2) √(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zo8ihy5kgj3pibjx1ns06uvx7c2f21gcc4.png)