189k views
1 vote
Which is equivalent to √60n^11/256n^4 after it has been simplified completely? Assume n =0

Which is equivalent to √60n^11/256n^4 after it has been simplified completely? Assume-example-1

2 Answers

1 vote

Answer:

the second option

Explanation:

i just took the test!!

User Dustin Howett
by
6.2k points
2 votes

Answer:


\large\boxed{(n^3)/(8)√(15n)}

Explanation:


\sqrt{(60n^(11))/(256n^4)}\qquad\text{use}\ (a^n)/(a^m)=a^(n-m)\ \text{and}\ \sqrt{(a)/(b)}=(√(a))/(√(b))\\\\=\sqrt{(60)/(256)n^(11-4)}=(√(60n^7))/(√(256))=\frac{\sqrt{4n^(6+1)\cdot15}}{16}\qquad\text{use}\ a^n\cdot a^m=a^(n+m)\\\\=(√(4n^6\cdot15n))/(16)\qquad\text{use}\ √(ab)=√(a)\cdot√(b)\\\\=\frac{\sqrt{4n^(3\cdot2)}\cdot√(15n)}{16}\qquad\text{use}\ (a^n)^m=a^(nm)


=(√(4(n^3)^2)\cdot√(15n))/(16)=(√(4)\cdot√((n^3)^2)\cdot√(15n))/(16)=(2\!\!\!\!\diagup^1√(15n))/(16\!\!\!\!\!\diagup_8)=(n^3√(15n))/(8)