Answer:
![(f/g)(x)=(2x)/(x+5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y0psuonreile0dm4tgib908p0brj6o2hcx.png)
Explanation:
Given the function f(x):
![f(x)=4x^2+6x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oevm8i7v17lwh9l84etpoh0fe49f2dyjus.png)
And the function g(x):
![g(x)=2x^2+13x+15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tuvywshayiso5esedlolsvn9nu3owcrld8.png)
To find
you need to divide the function f(x) by the function g(x).
Therefore, knowing this, you get:
![(f/g)(x)=(4x^2+6x)/(2x^2+13x+15)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f7cwcrs3jyqfv7d76b2x8itvf701gv7mnn.png)
You can simplify the numerator by factoring out 2x:
![(f/g)(x)=(2x(2x+3))/(2x^2+13x+15)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hp168e6l62kc5mnmk3ymp6ga5xa0ysqo5n.png)
You have to simplify the denominator:
Rewrite the term 13x as a sum of two terms whose product be 30:
![(f/g)(x)=(2x(2x+3))/(2x^2+(10+ 3)x+15)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w8jux82sqvif6xfyb6tisucv7t8vvuhm6b.png)
Apply Distributive property:
![(f/g)(x)=(2x(2x+3))/(2x^2+10x+ 3x+15)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vqwslhspigfyoluyxsrophrscyxjybbd9u.png)
Make two groups of two terms:
![(f/g)(x)=(2x(2x+3))/((2x^2+10x)+ (3x+15))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cmm66sjky0hspjq841lmsf96kyz2jvfeta.png)
Factor out 2x from the first group and 3 from the second group:
![(f/g)(x)=(2x(2x+3))/((2x(x+5))+ 3(x+5))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mya9ci497zivshpe1dw63g988vhv055rpc.png)
Factor out (x+5):
![(f/g)(x)=(2x(2x+3))/((2x+3)(x+5))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l962w57benksrpozudht65gj04c4dbkymy.png)
Simplifying, you get:
![(f/g)(x)=(2x)/(x+5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y0psuonreile0dm4tgib908p0brj6o2hcx.png)