Answer:
![x_1=1.23\\x_2=-0.40](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cgaaomcgg35fyxg8lzc6fuad5fvxpgjd6x.png)
Explanation:
Given a quadratic equation in the form
, you can use the Quadratic formula to solve it. This is:
![x=(-b\±√(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/college/nzmxzqefv733aqje6pzhmymg6dznp7bpm5.png)
Then, you need to subtract
from both sides of the equation given:
![5x-5x=6x^2-3-5x\\0=6x^2-5x-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2nfbzn2nqudul41kmggkj0lvu33cnog2pw.png)
You can identify that:
![a=6\\b=-5\\c=-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jrif563r4tcelum3krj0p9zdezucqr10wm.png)
Then, substituting values into the Quadratic formula, you get:
![x=(-(-5)\±√((-5)^2-4(6)(-3)))/(2(6))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jw7btel2izixztu2jsh97rfkbzbygdr3l5.png)
![x_1=1.23\\x_2=-0.40](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cgaaomcgg35fyxg8lzc6fuad5fvxpgjd6x.png)