Answer:
![(120\degree,-180\degree)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gmd7dn63ox4d0g0tmpmuqcsavolxc8yl6k.png)
Explanation:
The given parametric equation is
x=2t
y= -3t
The coordinates of any point lying on this curve can be obtained by substituting the parameter value.
Given the parameter value, t=60
We have
![x=2(60\degree)=120\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sphpq66pg1uej8239v0qnodjy7imv6toqt.png)
and
![y=-3(60)=-180\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/65ag6hguenva1sha90hb9s4z9mikiw7xyo.png)
Therefore the point
![(120\degree,-180\degree)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gmd7dn63ox4d0g0tmpmuqcsavolxc8yl6k.png)
lie on this parametric curve.