127k views
5 votes
Let f(x)=x^4-3x^3+5x use synthetic substitution to find f(-2)

1 Answer

1 vote

Answer:

f(-2) = 30

Explanation:


f(x)=x^4-3x^3+5x=1x^4-3x^3+0x^2+5x+0

The Remainder Theorem states that when we divide a polynomial f(x)

by x − a the remainder R equals f(a).

a = -2

Syntetic substitution.

1. Write only the coefficients of x in the dividend inside an upside-down division symbol.


\underline{\begin{array}ccccccc\ &1&-3&0&5&0\\\ \end{array}}

2. Put the divisor at the left.


\underline{\begin{array}c-2&1&-3&0&5&0\\\ \end{array}}

3. Drop the first coefficient of the dividend below the division symbol.


\underline{\begin{array}ccccccc-2&1&-3&0&5&0\\\ \end{array}}\\\begin{array}{ccccccccc}\ \ \ \ &1\end{array}

4. Multiply the drop-down by the divisor, and put the result in the next column.


\underline{\begin{array}ccccccc-2&1&-3&0&5&0\\\ &&-2\end{array}}\\\begin{array}{ccccccccc}\ \ \ \ &1\end{array}

5. Add down the column.


\underline{\begin{array}ccccccc-2&1&-3&0&5&0\\\ &&-2\end{array}}\\\begin{array}{ccccccccc}\ \ \ \ &1&-5\end{array}

6. Repeat 4 and 5 until you can go no farther


\underline{\begin{array}c-2&1&-3&0&5&0\\\ &&-2&10&-20&30\end{array}}\\\begin{array}{ccccccccc}\ \ \ \ &1&-5&10&-15&30\end{array}

The remainder is 30, so f(-2) = 30.

Check:


f(x)=x^4-3x^3+5x\\\\f(-2)=(-2)^4-3(-2)^3+5(-2)=16-3(-8)-10=16+24-10=30

User Turadg
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories