Answer:
The value of x is 1.46.
Explanation:
Given : Equation
![3^(x+1)=15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/flxc923tzfsuiofnp648tdlwjxd20ilrks.png)
To find : Solve for x using the change of base formula log base b of y equals log y over log b ?
Solution :
Equation
![3^(x+1)=15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/flxc923tzfsuiofnp648tdlwjxd20ilrks.png)
Applying the logarithmic property,
![a^x=b\Rightarrow \log_a(b)=x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2chxby9x6z3blji06w76z08rt4idhc3zbs.png)
![3^(x+1)=15\Rightarrow \log_3(15)=x+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j25zezum1ebi0re55hboyoia9ot0glwt5y.png)
Applying change base formula in LHS,
![log_b(y)= (log y)/(log b)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7wu1ns68pj02cdj5mtv06fkworau0fy74l.png)
![(log 15)/(log 3)=x+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qokzhplnxjxudv1vok46c9thgz3zfuefsg.png)
![2.46=x+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7htubb3js8pselwndgo36v61i0tw1pif8b.png)
![x=2.46-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/67uhjsri30bxecdnlcgm223i1w011aj8kq.png)
![x=1.46](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cmvz2stzntzteenu7g515fq4z9f9g7nlx0.png)
Therefore, the value of x is 1.46.