Answer:
c. the zeros, -24 and 24, can be found when 0= (x+24)(x-24).
Explanation:
The given function is
![g(x)=x^2-576](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o13yimkuu2s89nf7sex7soudh0bw01o84c.png)
When we equate the function to zero, we obtai;
![x^2-576=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pr1r9nruvx2d4fwxds9ohuf4f8pmsejn0b.png)
Use difference of two squares:
![x^2-24^2=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8jmpw3iyiusauvab6h7i5x0rfr8mwf7i6w.png)
![(x-24)(x+24)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/du3eoit4eettjd81bsl8va649xbu74p86l.png)
Use the zero product property to obtain;
![x-24=0,\:and\:x+24=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yk4dny9qfz6i7j0vpi3339pm0q4yz8ja4g.png)
This implies that;
![x=24,\:and\:x=-24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4ta92hl8ccysdp4jbw2mtali4y6131s5sn.png)
The correct choice is C