Answer:
The given parabola has vertex at (-5,8).
and directrion at: x=2,
So
axis of symmetry of the parabola is parallel to the x-axis.
This parabola has equation of the form:
(y - k)² = 4p(x - h)(y−k)
where (h,k)=(-5,8) is the vertex.
(y - 8)² = 4p(x -( - 5))(y−8)
and p =-5-2=-7
Hence the equation becomes,
(y - 8)²= 4( - 7)(x + 5)
(y-8)²+28(x+5)=0
is a required equation.