34.3k views
5 votes
Solve for x by using log. Rounded to hundredth.


10^(4x-5)=e^(3x)

User DeepSea
by
5.1k points

2 Answers

6 votes

Answer:


x=1.85

Explanation:

The given exponential equation is;


10^(4x-5)=e^(3x)

We take logarithm of both sides to base
e.


\ln 10^(4x-5)=\ln e^(3x)


(4x-5)\ln 10=3x\ln e


(4x-5)\ln 10=3x

Expand the left hand side;


4x\ln 10-5\ln 10=3x

Group like terms


4x\ln 10-3x=5\ln 10


(4\ln 10-3)x=5\ln 10


x=(5\ln 10)/(4\ln 10-3)


x=1.85

User Nababa
by
5.2k points
3 votes

Answer:
x=1.85

Explanation:

Given the expression
10^(4x-5)=e^(3x), apply natural logarithm to both sides. Then:


ln(10)^(4x-5)=ln(e)^(3x)

Remember that according the the properties of logarithms:


ln(a)^m=mln(a)


ln(e)=1

Then:


(4x-5)ln(10)={3x}

Apply distributive property and solve for "x". Then you get:


4x*ln(10)-5ln(10)=3x\\\\4x*ln(10)-3x=5ln(10)\\\\x(4ln(10)-3)=5ln(10)\\\\x=(5ln(10))/(4ln(10)-3)\\\\x=1.85