6.3k views
3 votes
Use matrices to determine the coordinates of the vertices of the reflected figure. Then graph the pre-image and the image on the same coordinate grid. (Picture below)

Use matrices to determine the coordinates of the vertices of the reflected figure-example-1
Use matrices to determine the coordinates of the vertices of the reflected figure-example-1
Use matrices to determine the coordinates of the vertices of the reflected figure-example-2

1 Answer

4 votes

Answer:

The coordinates of the vertices of the reflected figure are :

R' is (3 , 7), S' is (-7 , 2), T' is (-5 , -3) ⇒the right answer is figure (d)

Explanation:

* Lets study the matrices of the reflection

- The matrix of the reflection across the x-axis is


\left[\begin{array}{ccc}1&0\\0&-1\end{array}\right]

- Because when we reflect any point across the x-axis we

change the sign of the y-coordinate

- The matrix of the reflection across the y-axis is


\left[\begin{array}{ccc}-1&0\\0&1\end{array}\right]

- Because when we reflect any point across the y-axis we

change the sign of the x-coordinate

* Now lets solve the problem

- We will multiply the matrix of the reflection across the y-axis

by each point to find the image of each point

- The dimension of the matrix of the reflection across the y-axis

is 2×2 and the dimension of the matrix of each point is 2×1,

then the dimension of the matrix of each image is 2×1

∵ Point R is (-3 , 7)

∴ R' =
\left[\begin{array}{ccc}-1&0\\0&1\end{array}\right] \left[\begin{array}{ccc}-3\\7\end{array}\right]=


\left[\begin{array}{ccc}(-1)(-3)+(0)(7)\\(0)(-3)+(1)(7)\end{array}\right]=\left[\begin{array}{ccc}3\\7\end{array}\right]

∴ R' is (3 , 7)

∵ Point S is (7 , 2)

∴ S' =
\left[\begin{array}{ccc}-1&0\\0&1\end{array}\right]\left[\begin{array}{ccc}2\\7\end{array}\right]=


\left[\begin{array}{ccc}(-1)(7)+(0)(2)\\(0)(7)+(1)(2)\end{array}\right]=\left[\begin{array}{ccc}-7\\2\end{array}\right]

∴ S' is (-7 , 2)

∵ Point T is (5 , -3)

∴ T' =
\left[\begin{array}{ccc}-1&0\\0&1\end{array}\right]\left[\begin{array}{ccc}5\\-3\end{array}\right]=


\left[\begin{array}{ccc}(-1)(5)+(0)(-3)\\(0)(5)+(1)(-3)\end{array}\right]=\left[\begin{array}{ccc}-5\\-3\end{array}\right]

∴ T' is (-5 , -3)

* Look to the answer and find the correct figure

- In figure (d) R' is (3 , 7), S' is (-7 , 2), T' is (-5 , -3)

∴ The right answer is figure (d)

User Martin Paljak
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.