21.6k views
6 votes
Plz help with full process


\frac{(a - b)^(2) - {c}^(2) }{{a}^(2) - {(b+ c)}^(2) } + \frac{(b - c)^(2) - {a}^(2) }{{b}^(2) - {(c+ a)}^(2) } + \frac{(c - a)^(2) - {b}^(2) }{{c}^(2) - {(a+ b)}^(2) }


User AAlferez
by
7.1k points

2 Answers

13 votes

Answer:

Siblings r annoying

Explanation:

User Qdelettre
by
8.1k points
2 votes

Answer:


\displaystyle \frac{(a - b)^(2) - {c}^(2) }{{a}^(2) - {(b+ c)}^(2) } + \frac{(b - c)^(2) - {a}^(2) }{{b}^(2) - {(c+ a)}^(2) } + \frac{(c - a)^(2) - {b}^(2) }{{c}^(2) - {(a+ b)}^(2) }=1

Explanation:

Algebra Simplifying

We are given the expression:


\displaystyle T=\frac{(a - b)^(2) - {c}^(2) }{{a}^(2) - {(b+ c)}^(2) } + \frac{(b - c)^(2) - {a}^(2) }{{b}^(2) - {(c+ a)}^(2) } + \frac{(c - a)^(2) - {b}^(2) }{{c}^(2) - {(a+ b)}^(2) }

We need to repeatedly use the following identity:


(a^2-b^2)=(a-b)(a+b)

For example, the first numerator has a difference of squares thus we factor as:


(a - b)^(2) - {c}^(2) =(a-b-c)(a-b+c)

The first denominator can be factored also:


{a}^(2) - {(b+ c)}^(2) = (a-b-c)(a+b+c)

Applying the same procedure to all the expressions:


\displaystyle T=((a - b- c)(a-b+c) )/(a-b-c)(a+b+c) ) + ((b - c - a)(b-c+a) )/((b-c-a)(b+c+a) ) + ((c - a-b)(c-a+b) )/((c-a-b)(c+a+b))

Simplifying all the fractions:


\displaystyle T=(a - b- c)/(a+b+c) + (b-c+a)/(b+c+a ) + (c-a+b )/(c+a+b)

Since all the denominators are equal:


\displaystyle T=(a - b+ c+b-c+a+c-a+b)/(a+b+c)

Simplifying:


\displaystyle T=(a +c+b)/(a+b+c)

Simplifying again:

T = 1

Thus:


\boxed{\displaystyle \frac{(a - b)^(2) - {c}^(2) }{{a}^(2) - {(b+ c)}^(2) } + \frac{(b - c)^(2) - {a}^(2) }{{b}^(2) - {(c+ a)}^(2) } + \frac{(c - a)^(2) - {b}^(2) }{{c}^(2) - {(a+ b)}^(2) }=1}

User Liam Mitchell
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories