21.6k views
6 votes
Plz help with full process


\frac{(a - b)^(2) - {c}^(2) }{{a}^(2) - {(b+ c)}^(2) } + \frac{(b - c)^(2) - {a}^(2) }{{b}^(2) - {(c+ a)}^(2) } + \frac{(c - a)^(2) - {b}^(2) }{{c}^(2) - {(a+ b)}^(2) }


User AAlferez
by
4.2k points

2 Answers

13 votes

Answer:

Siblings r annoying

Explanation:

User Qdelettre
by
5.3k points
2 votes

Answer:


\displaystyle \frac{(a - b)^(2) - {c}^(2) }{{a}^(2) - {(b+ c)}^(2) } + \frac{(b - c)^(2) - {a}^(2) }{{b}^(2) - {(c+ a)}^(2) } + \frac{(c - a)^(2) - {b}^(2) }{{c}^(2) - {(a+ b)}^(2) }=1

Explanation:

Algebra Simplifying

We are given the expression:


\displaystyle T=\frac{(a - b)^(2) - {c}^(2) }{{a}^(2) - {(b+ c)}^(2) } + \frac{(b - c)^(2) - {a}^(2) }{{b}^(2) - {(c+ a)}^(2) } + \frac{(c - a)^(2) - {b}^(2) }{{c}^(2) - {(a+ b)}^(2) }

We need to repeatedly use the following identity:


(a^2-b^2)=(a-b)(a+b)

For example, the first numerator has a difference of squares thus we factor as:


(a - b)^(2) - {c}^(2) =(a-b-c)(a-b+c)

The first denominator can be factored also:


{a}^(2) - {(b+ c)}^(2) = (a-b-c)(a+b+c)

Applying the same procedure to all the expressions:


\displaystyle T=((a - b- c)(a-b+c) )/(a-b-c)(a+b+c) ) + ((b - c - a)(b-c+a) )/((b-c-a)(b+c+a) ) + ((c - a-b)(c-a+b) )/((c-a-b)(c+a+b))

Simplifying all the fractions:


\displaystyle T=(a - b- c)/(a+b+c) + (b-c+a)/(b+c+a ) + (c-a+b )/(c+a+b)

Since all the denominators are equal:


\displaystyle T=(a - b+ c+b-c+a+c-a+b)/(a+b+c)

Simplifying:


\displaystyle T=(a +c+b)/(a+b+c)

Simplifying again:

T = 1

Thus:


\boxed{\displaystyle \frac{(a - b)^(2) - {c}^(2) }{{a}^(2) - {(b+ c)}^(2) } + \frac{(b - c)^(2) - {a}^(2) }{{b}^(2) - {(c+ a)}^(2) } + \frac{(c - a)^(2) - {b}^(2) }{{c}^(2) - {(a+ b)}^(2) }=1}

User Liam Mitchell
by
4.9k points