Answer:
Option A.
Explanation:
Half life of Uranium-235 has been given as 700 million years.
Since radioactive decay is an exponential phenomenon so the formula will be
![A_(t)=A_(0)e^(-kt)](https://img.qammunity.org/2020/formulas/mathematics/college/soujymri37loz89spu5nr6abb94trfzeuz.png)
where
= Amount of the radioactive element at the time 't'
= Initial amount
t = time for decay
k = decay constant
By this formula,
![(A_(0))/(2)=A_(0)e^(-kt)](https://img.qammunity.org/2020/formulas/mathematics/college/sy3ocjnc9vm108ng55wce4ahtffp7thzgf.png)
![(1)/(2)=e^{-700* 10^(6) k}](https://img.qammunity.org/2020/formulas/mathematics/college/skaiag3y2jk3tcjrrnvpv71drk5p5fy0bk.png)
By taking natural log on both the sides,
![ln((1)/(2))=ln(e^{-700* 10^(6)k } )](https://img.qammunity.org/2020/formulas/mathematics/college/9mv4jkugbpaa2ta3mqbf87yu423ctw2yaw.png)
![-ln2=-700* 10^(6)* k](https://img.qammunity.org/2020/formulas/mathematics/college/ta96lizbjjz620gy1zhigg1jihs46befz2.png)
0.693147 =
![700* 10^(6)k](https://img.qammunity.org/2020/formulas/mathematics/college/dz10kpxq2w9570pjsst3ejgxxxfcoej927.png)
k =
![(0.693147)/(700* 10^(6))](https://img.qammunity.org/2020/formulas/mathematics/college/yxj9pz5kpqklkrs0py0zu0js91725t2mif.png)
=
![(0.693147)/(7* 10^(8))](https://img.qammunity.org/2020/formulas/mathematics/college/xvzugyxdh15ay1y65dkk8fogznokx4rfb6.png)
=
![9.9* 10^(-10)](https://img.qammunity.org/2020/formulas/mathematics/college/tcf01krmcog1je1qabrwfz9onc3719n65z.png)
Now we have to find the age of the rock which is one sixteenth of the original rock.
By the formula again,
![A_(t)=A_(0)e^(-kt)](https://img.qammunity.org/2020/formulas/mathematics/college/soujymri37loz89spu5nr6abb94trfzeuz.png)
![(A_(0))/(16)=A_(0)e^(-kt)](https://img.qammunity.org/2020/formulas/mathematics/college/kkw8e17fcjnl6c7atthw8s0ne45q0n3xgd.png)
![(1)/(16)=e^{-9.9* 10^(-10)t}](https://img.qammunity.org/2020/formulas/mathematics/college/it4vnu8e257w3y3ssbjtuctcwfdxnu6q3u.png)
Taking log on both the sides.
![ln(1)/(16)=ln(e^{-9.9* 10^(-10)t})](https://img.qammunity.org/2020/formulas/mathematics/college/3dyfo0rp2duzsb3hpjo0ts22jq7bx7fsav.png)
![2.772588=-9.9* 10^(-10)* t](https://img.qammunity.org/2020/formulas/mathematics/college/50hehawkn4wqk02jy5e05n5rohtcl9ym28.png)
t =
![(2.772588)/(9.9* 10^(-10) )](https://img.qammunity.org/2020/formulas/mathematics/college/dq0ftozbylfg0alhobbre0isd9husw6zdy.png)
t =
![0.28* 10^(10)](https://img.qammunity.org/2020/formulas/mathematics/college/s9rch25ov3habpx8alis8yux4ctvv6je0e.png)
t =
![2.8* 10^(9)](https://img.qammunity.org/2020/formulas/mathematics/college/kp5w7y749xl2lw7uhjn66rfkjo0356b8zc.png)
Therefore, the rock is 2.8 billion years old.
Option A. is the answer.