16.1k views
4 votes
Find the value of x (3/5)^x(5/3)^2x=125/27​

User Bhavik
by
5.2k points

1 Answer

0 votes

Given:

The equation is


\left((3)/(5)\right)^x\left((5)/(3)\right)^(2x)=(125)/(27)

To find:

The value of x.

Solution:

We have,


\left((3)/(5)\right)^x\left((5)/(3)\right)^(2x)=(125)/(27)


\left((5)/(3)\right)^(-x)\left((5)/(3)\right)^(2x)=(5* 5* 5)/(3* 3* 3)
[\because \left((a)/(b)\right)^(-m)=\left((b)/(a)\right)^(m)]


\left((5)/(3)\right)^(-x+2x)=(5^3)/(3^3)
[\because a^ma^n=a^(m+n)]


\left((5)/(3)\right)^(x)=\left((5)/(3)\right)^(3)

On comparing the exponents, we get


x=3

Therefore, the value of x is 3.

User Bajaco
by
4.9k points