16.1k views
4 votes
Find the value of x (3/5)^x(5/3)^2x=125/27​

User Bhavik
by
8.5k points

1 Answer

0 votes

Given:

The equation is


\left((3)/(5)\right)^x\left((5)/(3)\right)^(2x)=(125)/(27)

To find:

The value of x.

Solution:

We have,


\left((3)/(5)\right)^x\left((5)/(3)\right)^(2x)=(125)/(27)


\left((5)/(3)\right)^(-x)\left((5)/(3)\right)^(2x)=(5* 5* 5)/(3* 3* 3)
[\because \left((a)/(b)\right)^(-m)=\left((b)/(a)\right)^(m)]


\left((5)/(3)\right)^(-x+2x)=(5^3)/(3^3)
[\because a^ma^n=a^(m+n)]


\left((5)/(3)\right)^(x)=\left((5)/(3)\right)^(3)

On comparing the exponents, we get


x=3

Therefore, the value of x is 3.

User Bajaco
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories