511,825 views
4 votes
4 votes
Please help! find the distance of AG if A (4,4) and G (-1,-1)

User Ilia Draznin
by
2.0k points

2 Answers

28 votes
28 votes

  • The distance between two points
    \rm{A(x_1,y_1)} and
    \rm{B(x_2,y_2)} is given by the formula,


\rm{AB= √((x_2-x_1)^2+(y_2-y_1)^2) }

Proof:


\rm{Let \: X'OX \: and \: YOY' \: be \: the \: z-axis \: and \: y-axis \: respectively. Then, O \: is \: the \: origin.}


\rm{Let \: A(x_1,y_1) \: and \: B(x_2,y_2) \: be \: the \: given \: points.}


\rm{Draw \: AL \perp \: OX, BM \perp \: OX \: and \: AN \perp BM }

Now,


\rm{OL=x_1,OM=x_2,AL=y_1 \: and \: BM=y_2}


\rm\therefore{AN=LM=(OM-OL)=(x_2-x_1)}


\: \: \: \: \rm{BN=(BM-NM)=(BM-AL)=(y_2-y_1)}


\rm{In \: right \: angled \: \triangle ANB, by \: Pythagorean \: theorem,}

We have,


\: \: \: \: \rm{AB^2=AN^2+BN^2}


\rm{or,AB^2=(x_2-x_1)^2+(y_2-y_1)^2}


\rm\therefore AB= √((x_2-x_1)^2+(y_2-y_1)^2)

The Given question,

Find the distance of AG if A (4,4) and G (-1,-1).

Solution,

The given points are A(4,4) and G(-1,-1).

Then,


\rm{(x_1=4,y_1=4) and (x_2=-1,y_2=-1)}

We know that,

The distance formula,


\rm{AG= √((x_2-x_1)^2+(y_2-y_1)^2) }


\: \: \: \: \: \: \: \: = \sqrt{ {( - 1 - 4)}^(2) + {( - 1 - 4)}^(2) }


\: \: \: \: \: \: \: \: = \sqrt{ {( - 5)}^(2) + {( - 5)}^(2) }


\: \: \: \: \: \: \: \: = √(25 + 25)


\: \: \: \: \: \: \: \: = √(50)


\: \: \: \: \: \: \: \: = √((2)(25))


\: \: \: \: \: \: \: \: = √((2)(5)(5))


\: \: \: \: \: \: \: \: = \sqrt{(2)( {5}^(2)) }


\rm \: \: \: \: \: \: \: \: = 5 √(2) \: units

Answered by:


\frak{\red{moonlight123429}}

User Subho
by
2.9k points
16 votes
16 votes


{\qquad\qquad\huge\underline{{\sf Answer}}}

Let's solve ~

By using distance formula :


\qquad \sf  \dashrightarrow \: \sqrt{(x_2 - x_1) {}^(2) + (y_2 - y_1) {}^(2) }


\qquad \sf  \dashrightarrow \: \sqrt{(4 - ( - 1)) {}^(2) + (4 - ( - 1)) {}^(2) }


\qquad \sf  \dashrightarrow \: \sqrt{(4 + 1) {}^(2) + (4 + 1) {}^(2) }


\qquad \sf  \dashrightarrow \: \sqrt{2(5) {}^(2) }


\qquad \sf  \dashrightarrow \: 5 √(2 )\: \: units

User ValenceElectron
by
3.4k points