204k views
5 votes
Regard y as the independent variable and x as the dependent variable and use implicit differentiation to find dx/dy. x5y2 − x4y + 2xy3 = 0

User Siva
by
7.8k points

2 Answers

5 votes

Answer:

dx/dy = (x^4 - 2x^5y - 6xy^2) / (5x^4y^2 - 4x^3y + 2y^3).

Explanation:

x^5y^2 − x^4y + 2xy^3 = 0

Applying the Product and Chain Rules:

y^2*5x^4*dx/dy + 2y*x^5 - (y*4x^3*dx/dy + x^4) + (y^3* 2*dx/dy + 3y^2*2x) =0

Separating the terms with derivatives:

y^2*5x^4*dx/dy - y*4x^3*dx/dy + y^3* 2*dx/dy = x^4 - 2y*x^5 - 3y^2*2x

dx/dy = (x^4 - 2x^5y - 6xy^2) / (5x^4y^2 - 4x^3y + 2y^3)

User SKwa
by
7.7k points
3 votes

Answer:


(dx)/(dy)=(-2x^5y+x^4-6xy^2)/(5x^4y^2-4x^3y+2y^3)

Explanation:

The given equation is


x^5y^2-x^4y+2xy^3=0

Differentiate with respect to y.


(d)/(dy)(x^5y^2)-(d)/(dy)(x^4y)+(d)/(dy)(2xy^3)=0

Using product rule we get


x^5(d)/(dy)(y^2)+y^2(d)/(dy)(x^5)-x^4(d)/(dy)(y)-y(d)/(dy)(x^4)+2x(d)/(dy)(y^3)+2y^3(d)/(dy)(x)=0
(fg)'=fg'+gf'


x^5(2y)+y^2(5x^4(dx)/(dy))-x^4(1)-y(4x^3(dx)/(dy))+2x(3y^2)+2y^3(dx)/(dy)=0


2x^5y+5x^4y^2(dx)/(dy)-x^4-4x^3y(dx)/(dy)+6xy^2+2y^3(dx)/(dy)=0

Isolate
(dx)/(dy) terms on left side.


5x^4y^2(dx)/(dy)-4x^3y(dx)/(dy)+2y^3(dx)/(dy)=-2x^5y+x^4-6xy^2


(5x^4y^2-4x^3y+2y^3)(dx)/(dy)=-2x^5y+x^4-6xy^2

Isolate
(dx)/(dy) term.


(dx)/(dy)=(-2x^5y+x^4-6xy^2)/(5x^4y^2-4x^3y+2y^3)

Therefore the value of
(dx)/(dy) is
(-2x^5y+x^4-6xy^2)/(5x^4y^2-4x^3y+2y^3).

User Deemaah
by
7.3k points