Answer:
The measure of the arc PJ is
![75\°](https://img.qammunity.org/2020/formulas/mathematics/college/9dusvx4zozbuiy0pqzfflv8zwrqeq7g90s.png)
Explanation:
step 1
Find the measure of angle L
we know that
In a inscribed quadrilateral opposite angles are supplementary
so
![m<L+m<J=180\°](https://img.qammunity.org/2020/formulas/mathematics/college/awjuq2zkdzvfvzfk5tkc5s89we67m317is.png)
we have
![m<J=110\°](https://img.qammunity.org/2020/formulas/mathematics/college/820m9855y4xfbneswwyz7jpo74ye611jzy.png)
substitute
![m<L+110\°=180\°](https://img.qammunity.org/2020/formulas/mathematics/college/tvxqr6a6c17ab24dta7skmla3i1ew19axk.png)
![m<L=70\°](https://img.qammunity.org/2020/formulas/mathematics/college/q2ehejwsf3j92u2zq5z16ucumvw2x2d3nz.png)
step 2
Find the measure of arc KJ
we know that
The inscribed angle measures half that of the arc comprising
so
![m<P=(1)/(2)(arc\ LK+arc\ KJ)](https://img.qammunity.org/2020/formulas/mathematics/college/crr254920t8qd4moh1ko2ypi9cfh0gogy5.png)
substitute the values
![95\°=(1)/(2)(125\°+arc\ KJ)](https://img.qammunity.org/2020/formulas/mathematics/college/s5g0esb9emu9slo6he8lrxrhj44f6dm4v5.png)
![190\°=(125\°+arc\ KJ)](https://img.qammunity.org/2020/formulas/mathematics/college/4uhf4ryfvmd1cfifskv8wylon0mnvjd17i.png)
![arc\ KJ=190\°-125\°=65\°](https://img.qammunity.org/2020/formulas/mathematics/college/rjiklc57r7967wgwxzn5ba1zq00qjli36a.png)
step 3
Find the measure of arc PJ
we know that
The inscribed angle measures half that of the arc comprising
so
![m<L=(1)/(2)(arc\ PJ+arc\ KJ)](https://img.qammunity.org/2020/formulas/mathematics/college/5pkrngj0822trqhel0v9o6g5hdlhtibb56.png)
substitute the values
![70\°=(1)/(2)(65\°+arc\ PJ)](https://img.qammunity.org/2020/formulas/mathematics/college/iesmeg08js5br4wiw4e2w90iszowms4rk9.png)
![140\°=(65\°+arc\ PJ)](https://img.qammunity.org/2020/formulas/mathematics/college/9he1d74dq4r0axipajdlel88gh5dc9ag3j.png)
![arc\ PJ=140\°-65\°=75\°](https://img.qammunity.org/2020/formulas/mathematics/college/n7ov3qmm4l3f08r6f7tgz1bml0r0pkktk8.png)