Answer:
Part a:
![f(x)=-2(x+1)^2+8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2s2zj9quy898z3e0cv2vw8579l43l9r7cu.png)
Part b: Maximum value
Explanation:
Part a.
The given function is
.
We need to complete the square to obtain the vertex form
![f(x)=-2(x^2+2x)+6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/szz08ziu0t9zzxt8iw11qp6pcjmewwpwlw.png)
Add and subtract the square of half the coefficient of x.
![f(x)=-2(x^2+2x+(1)^2)--2(1)^2+6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1zv94s2y9pp7wpg7s58ydp4kup5bpmefef.png)
![f(x)=-2(x^2+2x+1)+2+6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zpam2kqhx3h8a7kqx9o5r9ulksmeadrprl.png)
The quadratic trinomial within the parenthesis is now a perfect square
![f(x)=-2(x+1)^2+8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2s2zj9quy898z3e0cv2vw8579l43l9r7cu.png)
The vertex form is
![f(x)=-2(x+1)^2+8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2s2zj9quy898z3e0cv2vw8579l43l9r7cu.png)
Part b
Comparing
to
, we have a=-2.
Since a is negative the vertex is a maximum point.
Hence the function has a maximum value