Answer:
Final answer is approx x=-0.66.
Explanation:
Given equation is
.
Now we need to solve equation
and round to the nearest hundredth.
![5^(-2x-1)=4^(4x+3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/e0r3g8wt6qgvt23m1kdyxhyahnelcn58wx.png)
![\log(5^(-2x-1))=\log(4^(4x+3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/wsnxzb0672i3j068cd4z0pxau2gaduj7df.png)
![(-2x-1)\log(5)=(4x+3)\log(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/8h28geg76jsy3v05klnvvh8y25kd157s5f.png)
![-2x \log(5)- \log(5)=4x \log(4)+3 \log(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/o3nz1j3azakbv2lzgkoby2ss7hscxz4keu.png)
![-2x \log(5) -4x \log(4)=3 \log(4) +\log(5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7msm7qpel3be5nhbri8rj6wll7p1nipa2l.png)
![x=(\left(3\log(4)+\log(5)\right))/(\left(-2\log(5)-4\log(4)\right))](https://img.qammunity.org/2020/formulas/mathematics/high-school/jdmoal4q1ivvjgyez3dd5d41vw7qcsis30.png)
Now use calculator to calculate log values, we get:
![x=-0.65817959094](https://img.qammunity.org/2020/formulas/mathematics/high-school/v9od32wl9tqzpw7dk2tp1dalqj5gkmw4pu.png)
Round to the nearest hundredth.
Hence final answer is approx x=-0.66.