The vertex on a parabola can be generalized trivially using differential calculus. See that
is a parabola.
Now we use the formula
and
to solve this problem. We use the derivative of
![f](https://img.qammunity.org/2020/formulas/mathematics/high-school/g119oay27u3h11j2lz1h214kxue9mxg17f.png)
![\displaystyle \frac{\mathrm{d}}{\mathrm{d}x} f(x) = \frac{\mathrm{d}}{\mathrm{d}x}(ax^2) + \frac{\mathrm{d}}{\mathrm{d}x}(bx) + \frac{\mathrm{d}}{\mathrm{d}x}(c) = 2ax + b + 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lk2jz99x4cpkzbqup2sxwdwt9x959gbc5t.png)
We find where
. So this is when
.
This gives vertex x location. To find y location you calculate ycoordinate using f(x).
![f\left( (-b)/(2a) \right) = a\left( (-b)/(2a)\right)^2 + b\left((-b)/(2a)\right) + c = c - (b^2)/(4a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4yx56bvu5dkglmchzko9rkfikp06oeq232.png)
The vertex is
![V\left( (-b)/(2a), c - (b^2)/(4a) \right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/831u50sor3wdli5ddu84lovfzsqvmavfml.png)