, and
![6x^2(3x^2+3x+4)=18x^4+18x^3+24x^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ipdsoosqkacfwfhlcybbui0fme2dt8y3gf.png)
Subtracting this from
gives a remainder of
![(18x^4+27x^3+39x^2+22x+11)-(18x^4+18x^3+24x^2)=9x^3+15x^2+22x+11](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hvv9zemruneglrifn5kw0emjnyojdazny4.png)
, and
![3x(3x^2+3x+4)=9x^3+9x^2+12x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aode3l60ar9einffxv3i3h7jc3te257hfa.png)
Subtracting this from the previous remainder gives a new remainder of
![(9x^3+15x^2+22x+11)-(9x^3+9x^2+12x)=6x^2+10x+11](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q4blo1o45ek8s7ogm6jdzelppk74367hip.png)
, and
![2(3x^2+3x+4)=6x^2+6x+8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wdjexkkhtqz1yg8xmdd7cbzushmf68pzjd.png)
Subtracting this from the previous remainder gives a new remainder of
![(6x^2+10x+11)-(6x^2+6x+8)=4x+3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m7ppbsyll7hp1d8z9djrvedvkfu4j2c7wl.png)
is not divisible by
, so we're done. We ended up with
![(f(x))/(g(x))=\underbrace{6x^2+3x+2}_(q(x))+\underbrace{(4x+3)/(3x^2+3x+4)}_(r(x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zyoaezgvhut3t2rq96zjmmsn0uzfwcibo3.png)