232k views
0 votes
What is the result of isolating x^2 in the equation below (x+1)^2+(y-8)^2=9

User Felixyz
by
5.3k points

2 Answers

1 vote

Answer:

x² = 8 - (y - 8)² - 2x

x² = 16y - y² - 2x - 56

Explanation:

∵ (x + 1)² + (y - 8)² = 9

∵ x² + 2x + 1 = 9 - (y - 8)²

∴ x² = 9 - (y - 8)² - 2x - 1

∴ x² = 8 - (y - 8)² - 2x

OR:

∵ x² = 8 - (y² -16y + 64) - 2x

∴ x² = 8 - y² + 16y - 64 - 2x

∴ x² = 16y - y² - 2x - 56

User Itwasntme
by
5.7k points
3 votes

Answer:

x² = 16y-y²-2x-56

Explanation:

We have given the equation:

(x+1)²+(y-8)²=9

We have to solve it for x².

So, the above equation is:

(x+1)²+(y-8)²=9

Open the square of the terms we get,

x²+1+2x+y²+64-16y = 9

x²+2x+y²-16y+65 = 9

The equation in terms of x² is:

x²= 9-2x-y²+16y-65

x² = 16y-y²-2x-56 is the answer.

User Martinyyyy
by
5.1k points