Assignment:
![\bold{Solve \ Equation: \ 3x^2+15x=18}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kp9q3qk9dq6corg9pd2wkzqzg3rr2h9ftc.png)
<><><><><><><>
Answer:
![\boxed{\bold{x=1,\:x=-6}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ymfdoyxs7vp2114ic39zwnhl0zlw6ula7o.png)
<><><><><><><>
Explanation:
![\downarrow\downarrow\downarrow](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dctvxg2z0ympja3tmxxhi9zpbvh4re2ynu.png)
<><><><><><><>
[ Step One ] Subtract 18 From Both Sides
![\bold{3x^2+15x-18=18-18}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ex4oj1ttozpxet0cwgtj8k35djz3oyl39w.png)
[ Step Two ] Simplify
![\bold{3x^2+15x-18=0}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7uh9w27wczrfe9217v539zqszrz43xwqqv.png)
[ Step Three ] Solve With Quadratic Formula
Note:
![\bold{For\:a\:quadratic\:equation\:of\:the\:form\: ax^2+bx+c=0}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xamez5nralj6xdqv0d6giedhucaf5ty68c.png)
![\bold{the \ solutions \ are \ x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dr5qm4hy0nup17cwc4455720ql9o85ykdy.png)
![\bold{a=3,\:b=15,\:c=-18:\quad x_(1,\:2)=(-15\pm √(15^2-4\cdot \:3\left(-18\right)))/(2\cdot \:3)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rlseulcoohlli25dyeq97x1p87tc84ija8.png)
<><><><><><><>
![\bold{(-15+√(15^2-4\cdot \:3\left(-18\right)))/(2\cdot \:3): \ 1}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5no4vgzd3w95lisb0psv5foa5eezjx6t0e.png)
![\bold{(-15-√(15^2-4\cdot \:3\left(-18\right)))/(2\cdot \:3): \ -6}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6d6jy632egkmcq9902aqw8hzd9wdxc7vix.png)
[ Step Four ] Combine Solutions
![\bold{x=1,\:x=-6}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ttfx7x0ankk8ryyvzysbavcuuyegfpnori.png)
<><><><><><><>